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A variety of methods have been developed to identify brain networks with spontaneous, coherent activity in
resting-state functional magnetic resonance imaging (fMRI). We propose here a generic statistical
framework to quantify the stability of such resting-state networks (RSNs), which was implemented with
k-means clustering. The core of the method consists in bootstrapping the available datasets to replicate the
clustering process a large number of times and quantify the stable features across all replications. This
bootstrap analysis of stable clusters (BASC) has several benefits: (1) it can be implemented in a multi-level
fashion to investigate stable RSNs at the level of individual subjects and at the level of a group; (2) it provides
a principled measure of RSN stability; and (3) the maximization of the stability measure can be used as a
natural criterion to select the number of RSNs. A simulation study validated the good performance of the
multi-level BASC on purely synthetic data. Stable networks were also derived from a real resting-state study
for 43 subjects. At the group level, seven RSNs were identified which exhibited a good agreement with the
previous findings from the literature. The comparison between the individual and group-level stability maps
demonstrated the capacity of BASC to establish successful correspondences between these two levels of
analysis and at the same time retain some interesting subject-specific characteristics, e.g. the specific
involvement of subcortical regions in the visual and fronto-parietal networks for some subjects.
.
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Introduction

Functional magnetic resonance imaging (fMRI) provides a mea-
sure of the vascular consequences of neuronal activity in the whole
brain. In a seminal work on resting-state fMRI, Biswal et al. (1995)
demonstrated that the spontaneous fMRI fluctuations exhibited a
significant level of spatial coherence within the sensorimotor
network. Since this initial experiment, functional connectivity
analysis has been used to investigate other brain resting-state
networks (RSNs), such as the visual, auditory and default-mode
networks (Perlbarg and Marrelec, 2008). The RSNs identified in fMRI
were found to be largely consistent with other measurements of the
brain organization such as task-evoked activations (Toro et al., 2008;
Smith et al., 2009), diffusion imaging (Damoiseaux and Greicius,
2009), maps of anatomical connectivity derived using retrograde
tracers in macaques (Vincent et al., 2007; Margulies et al., 2009) and
electrophysiology either on the scalp (Laufs et al., 2003) or on the
cortex (Shmuel and Leopold, 2008). The possibility opened by resting-
state fMRI to fully characterize the functional organization of the brain
with a single and simple experiment already proved very useful in
both clinical and basic neuroscience and is quickly growing popular
(Fox and Raichle, 2007; Greicius, 2008; Broyd et al., 2009).

A variety of algorithms have been proposed to automatically identify
RSNs in fMRI, including principal component analysis (Zhong et al.,
2009), independent component analysis (ICA) (McKeown et al., 1998)
and various clustering algorithms such as k-means (Baumgartner et al.,
1998), hierarchical clustering (Cordes et al., 2002), normalized cut-
graph (vandenHeuvel et al., 2008), self-organizingmaps andneural gas
(Meyer-Baese et al., 2004). The cost function or the heuristic that
actually drove these techniques varied across methods and imple-
mentations, yet they all resulted in a set of spatial maps which were
loosely termed RSNs. An important word of caution is that ICA and
clustering algorithmswould find RSNs in randomly generated datasets.
As a consequence, it is critical to verify that the RSNs derived in a
particular experiment are real in an objective manner (Smith and
Dubes, 1980). Unfortunately, RSNs derived in fMRI cannot be easily
validated against some “ground truth” results, simply because there is
no imaging technique other than fMRI and positron emission tomog-
raphy that can access functional networks distributed in the whole
human brain. As an alternative, it was proposed early in the clustering
literature (Raghavan, 1982) to address the following question: how
stable would the RSNs be if the experiment was to be replicated? That
question actually entails two challenges. First, it may not be possible to
replicate the experiment at all, or at least not a large number of times.
Recently, some test–retest database has been used to investigate the
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reproducibility of RSNs (Chen et al., 2008; Shehzad et al., 2009; Zuo
et al., 2010) and, even though five sessions at most were acquired,
the collection of such database represented a considerable effort. As
most study will scan the subjects only once, some statistical techniques
need to circumvent the actual replications of the datasets. Second,
some measures have to be derived in order to quantify the stable
features of the replicated RSNs. This task is difficult because the order
of the RSNs is generally arbitrary within each particular experiment,
preventing the direct comparison of RSNs across replications.

A number of stability methods were developed in the context of
group analysis of ICA results in fMRI, see (Calhoun et al., 2009) for a
comprehensive review on this issue. These methods were all based on
a generic technique called component matching. Component match-
ing is performed by applying a clustering algorithm to an ensemble of
RSNs generated through multiple experiments. Each one of the
resulting clusters is composed of RSNs from all experiments which
shared similar spatial distributions. A voxelwise t-test could then be
used to identify the stable regions within each cluster of RSNs,
yielding one stable RSN per cluster. Esposito et al. (2005) and De Luca
et al. (2006) applied component matching to study the stability of
RSNs across different subjects. The stable RSNs thus formed a group-
level summary of the individual results. To assess the stability of these
group-level RSNs, Perlbarg et al. (2008) generated multiple surrogate
groups using bootstrap resampling of the subjects in the population.
Component matching was then applied to the replicated group-level
RSNs in order to study their stability across the surrogate groups. A
similar approach (Damoiseaux et al., 2006; Smith et al., 2009) was
employed for group-level RSNs generated through tensorial ICA
(Beckmann and Smith, 2005). The stability methods based on com-
ponent matching unfortunately suffers from two limitations. First, in
the works we just reviewed, it was not possible to derive individual
maps corresponding to each of the group-level RSNs. Some group-
level ICA techniques have the potential to establish correspondences
between individual and group-level analysis, i.e. back-reconstruction
in temporally-concatenated group ICA (Calhoun et al., 2009) or dual-
regression (Filippini et al., 2009). However, and despite some initial
attempts (Himberg et al., 2004), the stability of the individual maps
themselves was not assessed unless some test–retest database
was available (Zuo et al., 2010). Deriving stable individual counter-
parts to the group-level RSNswould be of particular interest in clinical
applications, where the RSNs could serve of biomarkers for various
diseases (Greicius, 2008). A second limitation of component matching
is that the stability is measured within a cluster of RSNs that were
matched precisely because of their large spatial similarity. Such
circularity in the definition of the stability yields an upward bias that
has recently been evidenced and needs to be corrected using an
additional statistical procedure (Langers, 2010).

In this paper, we propose a new framework called bootstrap
analysis of stable clusters (BASC) to study the stability of RSNs in
fMRI. Assessing stability is a central issue for exploratory methods in
general, whether it be a component analysis or any type of clustering
technique. We focussed here on the k-means clustering algorithm to
demonstrate the feasibility of BASC because of the low computa-
tional cost of this technique. Our statistical approach is still versatile
and could be applied to any algorithm working on individual time
series. BASC belongs to the family of cluster ensemble methods, see
(Fred and Lourenço, 2008) for a review, and is more specifically a
generalization of the evidence accumulation algorithm (Fred and Jain,
2005). The originality of our approach is to provide a probabilistic
formulation of the stability measure of the clustering process. In line
with approaches developed in the field of phylogenetic analysis (Kerr
and Churchill, 2001; Suzuki and Shimodaira, 2006), the stability
measure can be estimated both for individual and group fMRI datasets
using well-adapted bootstrap methods. The group-level BASC is
actually based on the results of the individual-level BASC, making this
approach analogous to the hierarchical multi-level framework used
for general linear model analysis where parameter and uncertainty
estimates are passed from one level of the analysis to the other
(Woolrich et al., 2004). It is moreover possible to combine both levels
of analysis by generating individual stability maps associated with
each group-level RSN. BASC also provides a principled way to select
the parameters of the clustering algorithm, by maximizing a global
stability contrast measure. The ability of the multi-level BASC method
to accurately control for the stability of the RSNs was investigated
using fully synthetic groups of fMRI time series. The method was then
applied to a real 43 subject database of resting-state fMRI in order to
compare the identified stable group RSNs to those previously reported
in the literature. The individual stability maps associated with each
group RSN were examined to demonstrate the ability of BASC to
establish a successful correspondence between individual-level and
group-level analysis.

Methods

We start by introducing the principle of BASC in a very general
setting, before considering the particular context of individual-level
and group-level fMRI time series. A procedure to generate maps of
cluster stability for both levels of analysis is then provided. Strategies
to choose the parameters of the multi-level BASC method are
presented and the conditions of validity of the bootstrap approxima-
tion are discussed.

Bootstrap analysis of stable clusters (BASC)

In the most generic terms, a clustering algorithm is an operation
which takes a dataset y as input and produces a partition P of the
space into K non-overlapping subsets called clusters. Themost famous
example of a clustering process in neuroscience is arguably the
experiment performed by Brodmann (Brodmann, 1909), in which
case the dataset y was a map of the cortical layers derived with Nissl
stain, and the partition P was the subdivision of the cortex into
Brodmann's areas. The clustering was done in a subjective manner
based on the observed features of the cortical layers. In modern days,
this operation can be performed by one of the many automated
clustering algorithms that have been proposed in the literature, see
(Jain, 2010) for an excellent review. Such a clustering operation ϕ
attempts to optimize the similarity of the data associated within the
regions of each cluster in some sense which depends on the employed
algorithm.

To assess statistically the random variations that might occur in
the clustering results, the partition P is modeled as one sample of a
stochastic process consisting of two distinct steps:

Y→
f
y→

ϕ
Φ yð Þ: ð1Þ

The first step of the process is the generation of the dataset y, which is
typically done through a complex procedure such as an fMRI
acquisition. This is formalized by assuming that y is a sample of a
random variable Y with probability distribution function (pdf) f. The
second step is the application of the clustering algorithm ϕ to y,
resulting in a partition which is represented through an adjacency
matrix Φ(y) where Φi,j(y) equals 1 if the regions i and j belong to the
same cluster in the partition and equals 0 otherwise. The clustering
process ϕ may itself have some stochastic behaviour, e.g. some
algorithms are based on a random initialization.

The (pairwise) stability of a stochastic clustering process can be
captured through the probability that a given pair of regions i and j
belong to the same cluster:

Si;j = Pr Φi;j yð Þ = 1 jY→
f
y

� �
: ð2Þ



1 The clustering algorithm was an in-house implementation in Matlab of a k-means
classification, as described in (Duda et al., 2000). The centroids of the clusters were
initialized using a random subset of the time series. Whenever a cluster became empty
in the classification process, it was replaced by the singleton time series located the
further away from its centroid. To avoid falling too often in local minima, the k-means
was actually iterated 5 times with different initializations and the result with the
lowest within-cluster inertia was selected.

2 In Eq. 5 the stability matrix is denoted by a generic notation S, yet some specific
notations I and G are introduced for the individual- and group-level stability matrices.
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The matrix S, called the stability matrix, quantifies the stable fea-
tures of the stochastic clustering process. It is however not itself a
clustering, in the sense that it does not provide a partition of the space
into stable clusters. The key idea of the evidence accumulation
algorithm (Fred and Jain, 2005) was to formulate the search for stable
clusters as a clustering problem on the stability matrix. Stable clusters
could indeed be defined as a partition of the space composed of
regions that had a high probability of being clustering together, i.e.
high values in the matrix S. Many clustering algorithms, e.g. hier-
archical agglomerative clustering (HAC), could be applied directly
on an arbitrary similarity matrix and were thus suitable to solve this
problem.

It may not be possible in general to derive a closed expression for
the stability matrix because the pdf f and the clustering process ϕ do
not follow simple parametric forms. Instead, if drawing independent
samples (y(b))b=1

B from Y was possible, the stability matrix S could be
approximated by Monte-Carlo estimation, which would simply
consist of the average of all the sampled adjacency matrices:

Ŝ
MC
i;j = B−1 ∑

B

b=1
Φi;j y bð Þ� �

≐Si;j; ð3Þ

where ≐means that the two terms are asymptotically equal as B tends
toward infinity. This approximation of the stabilitymatrix was already
proposed by several authors under different names (Ben-Hur et al.,
2002; Fred and Jain, 2005; Steinley, 2008; Fred and Lourenço, 2008),
even though the relationship with the probabilistic formulation in
Eq. 2 was not made explicitly.

In many applications, including individual fMRI resting-state data,
it is not possible to derive independent data samples (y(b))b=1

B for B
greater than 10, and it may even be that B=1. The Monte-Carlo
estimate of stability from Eq. (3) would not achieve a reasonably
accurate approximation in such situation. It may however be possible
to resort to a non-parametric estimation of the distribution f in order
to derive an estimate of the stability. The bootstrap is such a non-
parametric technique which comes in different variations, adapted
to different types of data structure (Efron and Tibshirani, 1994). The
bootstrap uses a single data sample y in order to build an approxi-
mation f̂ y of the pdf f. It is then possible to derive a bootstrap esti-
mation of the stability matrix:

Ŝ
boot
i;j = Pr Φi;j y Tð Þ� �

= 1 jy→
f̂y
y Tð Þ

 !
: ð4Þ

As for the real pdf f, the bootstrap pdf f̂ y does not generally have a
closed, analytical form. The pdf f̂ y is rather defined implicitly through
a procedure to draw independent samples from f̂ y . The classical
bootstrap estimator is therefore a Monte-Carlo approximation of
Ŝboot:

Ŝi;j = B−1 ∑
B

b=1
Φi;j y ⁎bð Þ� �

≐ Ŝ
boot
i;j ; ð5Þ

where (y(⁎b))b=1
B are B independent samples drawn from f̂y using

bootstrap.

Individual-level BASC

In the case of individual fMRI time series, the dataset y is a
time×space array of size T×R, where T is the number of time points
and R is the number of regions. The data-generating process of the
time series involves scanning a real subject in resting-state and a
number of preprocessing steps performed on the raw fMRI volumes.
Amongst the large collection of existing clustering algorithms
available to search for individual clusters, we decided to investigate
the behaviour of the k-means algorithm1 because it is very standard
and fast to derive. The k-means algorithm directly applies to the time
series and has a single parameter: the number of clusters K.

In order to build a non-parametric approximation of the data-
generating process, it is important to note that the fMRI time series
exhibit dependencies in both time and space (Bullmore, 2000). This
makes the most standard version of the bootstrap non-applicable, yet
a variant called circular block bootstrap (CBB) (Efron and Tibshirani,
1994) is adapted to this case. The CBB draws independently temporal
blocks of length h from the time series y to respect the temporal
dependencies in the data. A block falling at the end of the time series is
completed by points from the beginning, hence the “circular” in CBB.
The resampled time blocks are pasted together in order to form a
surrogate time series y(⁎) with the same temporal dimension as the
original. The same time blocks are used for all the regions to preserve
spatial correlation and CBB formally leads to consistent confidence
intervals of spatial correlations (Lahiri, 2003). This scheme has been
demonstrated to be efficient in replicating the distribution of spatial
correlations in real fMRI time series (Bellec et al., 2008). As the k-
means algorithm is driven by the spatial correlation present in the
data, that scheme should provide a well-behaved approximation of
the individual stability. By applying the bootstrap approximation of
Eq. 5, an individual stability matrix Î is estimated using B bootstrap
samples generated through CBB.2 Note that, for each replication of the
individual clustering process, some new bootstrap surrogate time
series are generated and a k-means algorithm is applied based on
random initial points. As such, the bootstrap stability integrates all
sources of random variations, mixing the generation of the dataset
with the potential algorithmic variability. The BASC process for
individual time series as well as the list of parameters involved is
recapitulated in Fig. 1.

Group-level BASC

At the group level, an fMRI database is a collection of datasets
(y(n))n=1

N acquired on a group of N different subjects. The subjects
are recruited in the study following a data-generating process which
controls for some factors of non-interest, e.g. the group is balanced
regarding the number of men and women or the number of left- and
right-handed subjects. A subpopulation of subjects that fits a particular
profile regarding those factors is called a stratum, e.g. right-handed
women. Within each of the strata, the subjects are simply independent
samples of a population that meet some general criterion, e.g. healthy
subjects with no history of psychological disorder within a certain age
range.

We now describe a procedure to build a group-level clustering that
will give an accurate picture of the most stable features of the
individual-level clusterings. The key idea of the EAC algorithm, which
is to run a clustering algorithm on the stability matrix in order to
define stable cluster maps, can be applied to this end. Specifically, a
group-level cluster should be composed of pairs of regions that
maximize the average probability of belonging to the same cluster at
the individual level. This last quantity is captured by the average
individual stability matrix Ĵ:

Ĵi;j = N−1 ∑
N

n=1
Î

nð Þ
i;j ; ð6Þ



Fig. 1. Individual-level stability. Bootstrap estimation of the stability of the individual clustering of fMRI time series.
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where Î(n) is the bootstrap estimate of the individual stability matrix
associated with the original dataset y(n) of subject n. To build the
group clusters, a hierarchical agglomerative clustering3 (HAC) is
applied on the matrix Ĵ as it would be on any arbitrary similarity
matrix. The only parameter of the HAC algorithm is the number of
clusters L.

To apply a BASC to the group-level clustering process, the
bootstrap procedure has to approximate the distribution of the finite
sample of subjects that is used to derive Ĵ and the subsequent HAC.
This means that an appropriate bootstrap scheme has to mimic the
random variations of the subjects recruited within the group. In each
stratum of the population, the subjects are independent and
identically distributed. The standard bootstrap scheme (Efron and
Tibshirani, 1994) can therefore be applied: it consists of drawing
subjects with replacement from the real sample, in order to generate a
surrogate stratum featuring the same number of subjects as the
original. By repeating this step on every strata, the so-called stratified
bootstrap (SB) scheme generates a surrogate database of fMRI time
series (y(n,⁎))n=1

N . The surrogate time series are then plugged in the
individual-level clustering procedure to derive a replication Ĵ(⁎) of the
average individual stability matrix, which in turn is used to replicate
the group-level clustering. Note that, by contrast with the CBB
scheme, the replicated time series in SB are identical to the original
time series. The difference between the original and bootstrap
datasets is that some subjects may be absent of a particular bootstrap
sample, while others may be present multiple times. For this reason,
the individual-level BASC does not have to be actually replicated on
each bootstrap surrogate population. The individual stability matrices
are rather generated once and the average individual stability matrix
only is recomputed for each surrogate population based on the list of
subjects included in that sample.

The SB will provide a consistent estimate of the distribution of the
average individual stability Ĵ (Sitter, 1992). More elaborate versions of
the bootstrap have been developed for complicated stratified data, e.g.
(Nigam and Rao, 1996), but the SB employed here was adapted to the
3 The HAC was an in-house implementation in Matlab of a sequential, agglom-
erative, non-overlapping, hierarchical algorithm based on a similarity matrix. The
similarity between clusters was defined as the unweighted average stability between
the regions of the clusters, see the so-called UPGMA criterion in (Day and
Edelsbrunner, 1984). The algorithm started with single regions as clusters. At each
step, the two most similar clusters were merged together, until a specified number of
clusters was reached.
case of a small number of strata with a large number of individuals in
each stratum. The SB is repeated with C bootstrap samples to generate
an estimation Ĝ of the group-level stability matrix. The BASC process
for a group of fMRI time series as well as the list of parameters
involved is recapitulated in Fig. 2.

Stable clusters and stability maps

Once a stability matrix has been estimated, it can be fed in a HAC to
derive stable clusters, i.e. clusters that are optimally adapted to the
stable features of the stochastic clustering process. This can be done
both at the individual and group levels. The stable clusters do not
convey by themselves any quantitative information regarding
stability. A stability map can thus be derived by combining the
clusters with the stability matrix. For each region in the brain, the
stability score is defined as the average stability of that region with all
the regions within the cluster. Iterating this process over every region
yields a 3D stability map covering the whole brain. A low score in the
map can be interpreted in two ways: (1) the values in the stability
matrix are low or, (2) the cluster is poorly adapted to the stability
matrix. The stable clusters are a good choice to generate stability
maps, in the sense that they are built to minimize the effect of (2).
Formally, at the group level, a HAC is applied on the stability matrix Ĝ
to derive M stable group clusters, or RSNs. A group stability map is
generated for each cluster C:

w Cð Þi = C−1
i ∑

j∈C; j≠i
Ĝi;j; ð7Þ

for every region i in the brain.
At the individual level, the choice of the target clusters is not

straightforward. Relying on the individual stable clusters is feasible,
yet there would be no correspondence between clusters coming from
different subjects. The alternative would be to select a single target
clustering common to all subjects. The stable group clusters are
natural candidates for this purpose, as they were built to reflect the
average features of the individual clusters, which will minimize the
effect of (2) on average. In this approach, the individual mapsmay still
depart from the target group RSN. It is indeed possible that a subpart
of a group RSNmay exhibit zero stability for a particular subject, while
a part of the brain outside of the group RSN may exhibit high stability
with the regions of the group RSN. The ambiguity between (1) and



4 A workshop was recently organized on that question, with lectures accessible
online at http://videolectures.net/srmc07_tuebingen/.

5 The stability contrast is almost a particular case of the silhouette criterion
(Rousseeuw, 1987), the only difference being a normalization factor which is absent in
our criterion. This factor was originally designed to scale some generic unbounded
similarity measures but is not necessary for the stability measure which is already
bounded between 0 and 1.

Fig. 2. Group-level stability. Bootstrap estimation of the stability of the group-level clustering.
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(2) will still remain, in the sense that subjects that strongly depart
from the group average will appear with low stability maps even
though their stability matrix may exhibit large values. Individual
stability maps based on the group clustering therefore achieve
an implicit trade-off between the establishment of a clear correspon-
dence between subjects and the possibility to capture subject-specific
features.

Choice of the BASC parameters

The choice and impact of the parameters involved in the multi-
level BASC procedure are reviewed below. The block length h in the
CBB of individual time series needs to be adapted to the range of
temporal dependencies present in the data as well as to the number of
volumes T. It has been shown that this parameter has only minor
impact on the bootstrap distribution of the spatial correlations as long
as h is greater than 1, roughly of the order of

ffiffiffi
T

p
(Bellec et al., 2008).

Rather than setting a fixed value for h, the variability of the BASC
results associated with hwas included in the measure of stability. This
was implemented by drawing randomly a different value of h for each
bootstrap sample of time series with a uniform distribution within an
interval of reasonable values.

The Monte-Carlo estimation of the bootstrap stability has a
parameter which is the number of bootstrap samples B. The accuracy
of the Monte-Carlo approximation (Eq. (5)) is different from the
accuracy of the bootstrap approximation itself (Eq. (4)). The former
level of approximation is a well studied problem (Li et al., 2009), while
the latter is more difficult to assess as discussed in the next section.
Specifically, B can be selected in order to achieve any desired level of
accuracy. For example with B=100 (resp. B=1000) the variations on
the stability estimate due to Monte-Carlo sampling are smaller than 0.1
(resp. 0.05) in 95% of the cases under a quite conservative approach (i.e.
the variability is smaller in practice). See Supplementary Material A
for more details on that issue.

The most important parameters of the multi-level BASC algorithm
are the individual, group and final number of clusters, denoted by K, L
andM respectively. It has long been proposed to select the number of
clusters in order to maximize the stability of the clustering, e.g. (Jain,
1987; Ben-Hur et al., 2002), yet the way the stability was exactly
measured varied across study, see (Jain, 2010) for a review. Stability
was demonstrated to be an effective principle to select the number
of clusters in a number of practical situations and has established
itself as a tool for model selection in cluster analysis. The theoretical
foundations of this approach are however still subject to debate,4 e.g.
(Ben-David et al., 2007). A global stability criterion was straightfor-
ward to implement in the BASC framework, which was designed to
provide measures of stability. Specifically, a modified version of the
silhouette criterion (Rousseeuw, 1987) was implemented on the
group stability matrix using the stable group RSNs as a reference. Let i
be a brain region belonging to the RSN Ci. The rationale of the criterion
is to compare the average group-level stability of i with every other
regions in Ci to the maximal average stability of i with regions from
other RSNs. The stability contrast5 is formally defined as:

σ K; L;Mð Þ = R−1 ∑
R

i=1
w Cið Þi− argmax

C≠Ci
w Cð Þi
� �� �

; ð8Þ

where w(C)i was defined in Eq. (7). The possible σ values range
between−1 and 1. If σ is close to 1, it indicates that the within-cluster
stability is much larger than the between-cluster stability and the
clusters are well defined. On the contrary, a σ close to −1 indicates
that the between-cluster stability is larger than the within-cluster
stability, which means that the clusters are poorly adapted to Ĝ.

The stability contrast σ is a function of three integer parameters
(K, L, M). In order to retain comparable numbers of clusters at all
levels, the search for an optimal contrast with M final clusters is
restricted to K and L belonging to a neighbourhood N (M) of M, for
example the interval [70%M,130%M]. The following locally maximal
contrast function is thus defined:

σmax Mð Þ = max
K;L∈N Mð Þ

σ K; L;Mð Þ: ð9Þ

http://videolectures.net/srmc07_tuebingen/
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The final number of clusters Mopt is selected as the one which
maximizes σmax, and the individual and group parameters Kopt and
Lopt are selected as the one maximizing σ(K,L,Mopt) in the neighbour-
hood N (Mopt).

Validity of the BASC approximation of stability

An important question regarding the BASC approach is the validity
of the bootstrap estimate of the stability matrix. More specifically,
would the estimator defined in Eq. (5) be unbiased, i.e. would the
statistical expectation of the estimator be equal to the real stability
measure defined in Eq. (2). There is a large literature regarding the
theoretical asymptotical properties of bootstrap estimators (Shao and
Tu, 1995). Unfortunately, those results are applicable under relatively
strict conditions: the statistic would have to be a smooth function of
the mean. In our case, the statistic of interest is the adjacency matrix
resulting of a clustering algorithm, which departs from the “smooth
function of the mean” category. The available theoretical results are
thus quite limited (Field andWelsh, 2007). The standard bootstrap for
independent data seems efficient in practice to estimate the stability
in hierarchical clustering (Suzuki and Shimodaira, 2006), even though
bias-correction techniques (Shimodaira, 2004) improve the behav-
iour. Acknowledging this current theoretical limitation of BASC, we
resorted to bootstrap schemes that had an established satisfactory
behaviour regarding the spatial dependencies of the surrogate
bootstrap data. We also investigated the accuracy of BASC empirically
on Monte-Carlo simulations of synthetic fMRI time series. This
validation step would be necessary in any case, as the theoretical
results hold asymptotically, i.e. with the number of time samples T
and the number of subjects N tending towards infinity. Monte-Carlo
simulations with synthetic datasets allow the behaviour of the
method to be assessed for finite T and N.

Experiments on simulated time series

Simulation model

Themulti-level BASCmethod has been evaluated on fully synthetic
datasets. At the group level, brain regions were grouped into non-
overlapping clusters formed of a fixed number of regions. Individual
clusters were generated by applying a random perturbation of the
Fig. 3. Simulation study of the selection of the number of clusters. The stability contrast crit
parameters of the group simulation: number of subjects N, the parameter p driving the var
averaged over 30 experiments, and the error bars indicated the standard deviation of the m
group-level clusters. More specifically, regions of the brains were
treated as points on a circle. The group-level clusters were thus
viewed as regular portions on the circle. Individual clusters were
generated by randomly moving the edges between clusters. At the
individual level, regions within a cluster were generated by adding a
signal common to all regions, called cluster time series, and a noise
following a Gaussian distribution independent in space and time with
zero mean and unit variance. Each cluster time series was a sample of
an auto-regressive process of order 1, with parameter a=0.5, T=100
samples and a variance σc

2 common to all clusters. The free param-
eters of the simulations were the following:

• The number of clusters Λ.
• The number of regions per group cluster Γ.
• The variance of cluster time series σc

2 (or equivalently the signal-
to-noise ratio, SNR).

• The number of subjects N.
• The parameter p which defined the stability of the cluster edges
position across subjects (a small p corresponded to a large
variability).

Some preliminary experiments were done to determine eight
different scenarios corresponding to various difficulties in terms of
clustering stability, see Supplementary Materials B. The parameters
values of the different scenarios were Λ=5, Γ=20, SNR in {−10,−5},
N in {5, 20} and p in {0.4, 0.1}.

Selection of the number of clusters

The multi-level BASC was applied on simulated group time series
to select the number of clusters (K,L,M) with B=20 bootstrap samples
at the individual level and C=50 at the group level. A number of 30
simulation experiments were performed. For each experiment, the
number of clusters was investigated on a grid from 2 to 30. Fig. 3
represented the σmax criterion as a function of M. For almost every
scenario, the relationshipwas smoothwith a global maximum located
at M=5 which corresponded to the ground truth. The only scenario
departing from that behaviour was (p=0.1, SNR=−10, N=5), i.e.
the worst SNR with the maximal between-subjects variability and a
very low number of subjects. Note that for (p=0.4, N=20), the peak
stability contrast was above 0.9, indicating a close-to-perfect
clustering, regardless of the SNR at the individual level. Regarding
erion σmax was represented as a function of the number of final clusters M for different
iability of clusters across subjects and the signal-to-noise ratio (SNR). The curves were
ean.



Fig. 4. Simulation study of the bias in the group-level stability estimation. The estimated group-level stability was represented as a function of the true stability for different
parameters of the group simulation: number of subjects N, the parameter p driving the variability of clusters across subjects and the signal-to-noise ratio (SNR). The curves were
averaged over 200 experiments, and the error bars indicated the standard deviation of the mean.
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the final number of clusters M, the correct value M=5 was the most
selected value in every scenario but for (p=0.1, SNR=−10, N=5),
where it was M=2. With N=20 subjects, the correct number of
clusters M was selected in more than 80% of the simulations,
regardless of p and the SNR. The same behaviour was observed on
the group number of clusters L. The individual number of clusters K
had a much more widespread selection profile, even for (p=0.4,
N=20). The most frequently selected values were {5,6,7}, but the
range of selected number of clusters actually covered 2 to 8. This
result is not actually an issue as the optimal number of individual
clusters may not exactly match the real number of clusters extracted
at the group level. This simulation study demonstrated that the
stability contrast criterionwas able to correctly identify the number of
clusters at the group level in a reliable fashion as soon as the number
of subjects was larger than 20.

Accuracy of the group-level stability estimation

A first simulation experiment was performed to examine a
possible bias in the estimation of the stability using the BASC method.
This was implemented by comparing the true stability measures,
as defined through Eq. 3, and the bootstrap approximation at the
group level, as defined through Eq. 5. The parameters of the BASC
Fig. 5. Simulation study of the sensitivity and specificity of the group-level stability. The s
different parameters of the group simulation: number of subjects N, the parameter p drivin
approximation were selected to K=L=M=Λ, B=50 and C=100
bootstrap samples. A number of 200 experiments were used to derive
the average relationship between the true and the estimated stability
for each of the 8 scenarios of group fMRI time series, see Fig. 4. This
analysis evidenced a small bias of the BASC approximation: stability
above 0.5 is slightly underestimated, and stability below 0.5 is slightly
overestimated. This bias wasmostly present withN=5 and a low SNR
of −10 dB. It was smaller for N=20 subjects, and actually negligible
when the SNR was−5 dB. This experiment demonstrated that, in the
context of employed simulation models, the multi-level BASC
approach provided a satisfactory approximation of the group-level
clustering stability.

A second simulation experiment quantified the performance of
BASC in terms of detection of the real clustering structure by means of
receiver-operating characteristic (ROC) curves (Sorenson and Wang,
1996). True findings in the stability were defined as pairs of regions
that belonged to the regular clusters at the group level. For each
possible threshold on the estimated group-level stability matrix,
the associated sensitivity and specificity were derived and the rela-
tionship between those two parameters resulted into ROC curves
presented in Fig. 5. The SNR at the individual level had only a minor
impact on the results. The ROC analysis carried out on a small number
of subjects (N=5) exhibited mitigated performance, yet BASC almost
ensitivity of the group-level BASC was represented as a function of the specificity for
g the variability of clusters across subjects and the signal-to-noise ratio (SNR).



Fig. 6. Stability contrast criterion. The stability contrast criterion σ as a function of the clustering parameters (K,L,M). The plot are for varying M and fixed K,L, except for the upper
right plot which represents the maximal contrast σmax as a function of M for any (K,L) in a neighbourhood of M. See text for details.
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behaved as a perfect classifier with N=20 subjects. This suggested
that the statistical power of BASC as a detector of group-level
clustering structures should be satisfactory in the conditions of
application of most fMRI studies.

Experiment on a real resting-state fMRI database

Data acquisition

The multi-level BASC was applied on the younger subjects (age
ranging from 19 to 44 years) of a neuroimaging database collected by
the International Consortium for Brain Mapping (ICBM) and made
publicly available as part of the 1000-connectome project.6 A cohort of
N=43 healthy volunteers (21 men, 22 women) participated in this
studywhichwas approved by the local ethics committee. Subjects had
no history of neurological or psychiatric disorders. Three functional
runs were acquired for each subject under resting-state conditions i.e.
the subjects were asked to remain still, eyes closed, and to refrain
from any overt activity. For each functional run, 138 brain volumes of
BOLD signals were recorded on a 1.5 T Siemens scanner using a 2D
echoplanar BOLD MOSAIC sequence and the following parameters:
TR/TE=2 s/50 ms, 64×64 matrix with a 4×4 mm2 resolution, 23
contiguous axial slices covering the cortex but not the cerebellum,
slice thickness=4 mm, flip angle=90 ° and an 8-channel coil. A high-
resolution anatomical T1-weighted scan was also acquired: TR/
TE=0.022 s/0.0092 s, 256×256 matrix with a 1×1 mm2 resolution,
176 contiguous sagittal slices covering the whole brain, slice
thickness=1 mm, flip angle=30 °.

Data preprocessing

The fMRI database was preprocessed using the pipeline imple-
mented in the package called neuroimaging analysis kit7 (NIAK). The
three first volumes of each run were suppressed to allow the
magnetisation to reach equilibrium. Each dataset was corrected of
inter-slice difference in acquisition time, rigid body motion, slow time
drifts (high-pass filter with a 0.01 Hz cut-off) and physiological noise
(Perlbarg et al., 2007). Slow time drifts and physiological noise
6 http://www.nitrc.org/projects/fcon_1000/.
7 http://wiki.bic.mni.mcgill.ca/index.php/NiakFmriPreprocessing.
correction were implemented in an attempt to reduce the spatially
correlated noise present in the fMRI time series, which may introduce
stable clusters unrelated to neural activity. Data-driven noise
correction strategies have been reported to improve the detection of
RSNs and are increasingly popular in functional connectivity analysis
(Giove et al., 2009; Weissenbacher et al., 2009).

The following strategywas implemented to transform the individual
brains into a common space of analysis. For each subject, the mean
motion-corrected volume of all the datasets was coregistered with a T1
individual scan using Minctracc8 (Collins et al., 1994), which was itself
non-linearly transformed to the Montreal Neurological Institute (MNI)
non-linear template using the CIVET9 pipeline (Zijdenbos et al., 2002).
The functional volumes were resampled in the MNI space at a 2 mm
isotropic resolution and spatially smoothed with a 6 mm isotropic
Gaussian kernel. The spatial smoothingwas implemented in an attempt
to minimize the residual variability in anatomy and functional
organization of individual brain in stereotaxic space.

In order to limit the computational burden of the bootstrap
analysis, a region-growing algorithm (Bellec et al., 2006) was applied
to the concatenated time series of every subjects in order to derive a
common segmentation of the brain into small functionally homoge-
neous regions. To limit the memory demand, the region growing
was applied independently in each of the 116 areas of the AAL tem-
plate (Tzourio-Mazoyer et al., 2002). The resulting regions were
spatially connected with roughly equal size, which was set to the
smallest value that would lead to amenable computations, i.e. a size
of 800 mm3 translating into 1191 regions covering the grey matter.
The average time series within each region was derived after cor-
rection to a zero temporal mean and unit variance, and then
concatenated across all the fMRI datasets for each subject. This
process resulted into individual time series with T=405 time points10

and R=1191 regions.

Choice of BASC parameters

The block length for CBB of individual time series was selected
randomly at each bootstrap sample in the interval ([10,30]). BASCwas
8 http://wiki.bic.mni.mcgill.ca/index.php/MinctraccManPage.
9 http://wiki.bic.mni.mcgill.ca/index.php/CIVET.

10 (138 volumes − 3 dummy scans)×3 runs=405 time points per subject.

http://www.nitrc.org/projects/fcon_1000/
http://wiki.bic.mni.mcgill.ca/index.php/NiakFmriPreprocessing
http://wiki.bic.mni.mcgill.ca/index.php/MinctraccManPage
http://wiki.bic.mni.mcgill.ca/index.php/CIVET


Fig. 7. Partition of the brain into stable group-level networks. The group-level stability matrix (a) underwent a hierarchical clustering which was represented as a dendrogram
(b) andwas used to generate a partition intoM=7 clusters. These clusters were color-coded in matrix form (c), see text for details, and the same color code was applied to represent
the brain regions associated with each cluster, superimposed with theMNI152 non-linear template (d). Some representative sagittal, coronal and axial slices were selectedmanually.
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first applied in order to select the number of clusters with a small
number B=30 of bootstrap samples at the individual level and
C=250 bootstrap samples at the group level. Fig. 6 presented the
stability contrast σ as a function of the number of final clustersM, on a
grid of 5 to 30, with different choices of (K,L). The σ curves were
smooth and the global maximum was achieved for M close to the
employed K. The locally maximal contrast σmax was also smooth, but
did not present a clear global maximum. Instead, the first local
maximum at M=7 was followed by a plateau in the range 12 to 21.
This result demonstrated that more than one stable clustering
structure could be identified in resting-state fMRI data. The purpose
of this article being to illustrate the mechanics of the multi-level BASC
rather than investigating such multi-scale architecture, we reported
the results for a single M corresponding to the first local maximum.

Group-level stable clusters

To derive stability maps with high accuracy, the multi-level BASC
was applied a second time with B=200 bootstrap samples at the
individual level and C=1000 at the group level for the following
number of clusters (K=8,L=7,M=7). The group-level stability
matrix exhibited a very high stability contrast (σmax(7)=0.59), which
graphically translated into yellow–red diagonal squares (within-
clusters stability) on a deep blue background, see Fig. 7a. The
dendrogram representation of the HAC applied on the group-level
stability matrix showed that most of the merging between regions
occurred at a very high level of stability, above 0.9, see Fig. 7b. A
matrix representation of the RSNs was derived by coding every pairs
of regions within a given cluster with a specific color (Fig. 7c). Each
RSN of Fig. 7c was associated with a group of brain regions
represented in Fig. 7d. Some RSNs were strikingly similar to those
reported previously using group-level ICA (Damoiseaux et al., 2006):
a sensorimotor network (RSN3), a visual network (RSN6); the
default-mode network (RSN7). The bilateral temporal RSN2 resem-
bled a component from (Damoiseaux et al., 2006), yet the correspon-
dence was not clear due to differences in the employed field of views.
The fronto-parietal network (RSN4) included regions involved in
working-memory tasks, and has often been reported splitted into two
left and right subnetworks (Damoiseaux et al., 2006). The RSN5,
comprising ventro-frontal cortex, the thalami and the striatum, also
appeared like a merging of two components reported by (Damoiseaux
et al., 2008). RSN1 included some ventro-medial cortex and anterior
caudate, yet it also included regions around the cerebellar tentorium
indicating that it might have been corrupted by residual physiological
noise.

Stability maps

For each stable group RSN, the average group stability matrix was
translated into a stability map, as illustrated for RSN6 in Fig. 8a. The
same process was applied with the average individual stability matrix
(Fig. 8b) and each of the 43 individual stability matrices (Fig. 8c). For a
region i, the associated value of the stabilitymapwas the average of all
columns j≠ i of row i in the stability matrix, where j belonged to the
target cluster. Note that the stability score was represented only for
the regions inside the cluster in Fig. 8, but could actually be derived for
every brain region.

The group and average individual stability maps for the 7 RSNs
were presented in Fig. 9. The maps were derived on the whole brain,
yet only the values higher than 0.2 were represented and super-
imposed to an average structural scan to facilitate the identification of
anatomical landmarks. The percentiles of the distribution of these
stability maps within each RSN were reported in Table 1. At the group
level, the two most stable RSNs were the visual and sensorimotor
(respective median 0.91 and 0.94). The remaining RSNs had com-
parable levels of group stability (median ranging from 0.71 to 0.77).
The observed average individual stability was markedly smaller, with
a median of 0.49 and 0.53 for the two most stables, and a median
ranging from 0.3 to 0.36 for the other RSNs. It was interesting to note
that a relatively low level of average individual stability could result in
a high level of group stability, e.g. in the striatum Fig. 9e. The gradient
observed on the individual average stability of the sensorimotor also
resulted in a plateau of high stability at the group level 9c. This result
illustrated the fact that the group-level clustering was based on



Fig. 8.Multi-level stability maps. The group (a), average individual (b) and individual (c) stability matrices were represented in panels alongside with the associated stability maps
for one of the cluster (RSN6, visual).
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the balance of within-cluster and between-cluster average individual
stability, regardless of the absolute value. As long as the number of
subjects is high enough to ensure the stability of the structure of
the average individual stability matrix, the group-level stability may
achieve high values.

Ideally, a group-level analysis would achieve a good trade-off
between the establishment of clear correspondences across subjects
and the ability to identify subject-specific features. A standard devia-
tion map was thus generated to represent the spatial variability of the
individual maps associated with each group stable cluster. The
distance toolbox11 was also used to generate a multi-dimensional
scaling (MDS) representation of the 43 individual stability maps, and
the maps corresponding to the two subjects most distant on the MDS
first axis were selected. The average and standard deviation of indi-
vidual stabilitymaps, as well as the two selected individualmapswere
represented for four networks12 (RSN3, RSN4, RSN6, and RSN7) in
Fig. 10. A first general qualitative comment was that individual RSN
stability maps did match well with the group-level stable RSNs, even
though the maps were derived on the full brain, which indicated that
the group-level clustering process was efficient at picking up stable
features of the individual clusterings. Another general remarkwas that
there was a widespread distribution of the median values of stability
across subjects. For example for RSN3, the 5% upper subjects had a
stability median above 0.68 while for the 5% lower subjects it was
below 0.36 (see Table 1), which was apparent with the two selected
subjects in Fig. 10b. Thismay have reflected the absence or presence of
a particular RSN for some subject or a large deviation from the normal
group pattern for some subjects. Such global variation will contribute
to large standard deviation colocalized with large average individual
stability, as could be observed for RSN4 (Fig. 10b) and the frontal part
of RSN7 (Fig. 10d). The individual stability maps also evidenced
differences in the edges of the RSNs across subjects. For example, the
11 http://groups.google.com/group/distance-toolbox.
12 These networks were selected because they minimized or maximized the 5% upper
percentile across subjects of the median individual stability within the group RSN, see
Table 1.
RSN3hadmore anterior components for subject 36 than for subject 40,
see Fig. 10a; the frontal regions weremuch smaller for subject 22 than
for subject 23 in RSN4 , see Fig. 10b; the posterior cingulate had less
anterior extension for subject 31 than subject 42 in RSN7, see Fig. 10d.
These variations of edge position were clearly visible in the standard
deviation maps as well, see for example the sensorimotor network
(Fig. 10a) or the posterior cingulate area of the default-mode network
(Fig. 10d). Some regions were also present or absent from RSNs on
different subjects. For example, subject 23 had subparts of the caudate
nuclei associated with its RSN4, which were absent in subject 22, see
Fig. 10b, coronal slice; subject 42 had the thalami associated with
RSN6, which were absent in subject 17, see Fig. 10c, axial slice. The
standard deviation maps could identify areas where such change
occurred frequently, such as the medial part of the occipital cortex in
RSN6 (Fig. 10c). Taken together, these results demonstrated that the
multi-level BASC was able to identify some subject-specific features
associated with each of the group stable RSNs.

Discussion

We developed a general method called bootstrap analysis of stable
clusters (BASC) to extract the stable features of a random clustering
process. This method was applied to fMRI datasets, both at the
individual and group levels. A measure called stability contrast was
also designed to assess the quality of the clustering and was used to
select the parameters of the clustering.

BASC adds to the quickly growing set of techniques available
to identify RSNs. There is however an important distinction to be
made between the algorithm which is used to identify RSNs and the
mechanics employed to assess their stability. The BASC framework
belongs to the second category and is not limited to the k-means
algorithm. It would be applicable to any other clustering algorithm
and also to component analysis, if the spatial components were
transformed into clusters by application of a winner-take-all principle
where each voxel is associated to the component with maximal
contribution at this location. BASC therefore does not stand as an
alternative to ICA, but rather as a generic technique to investigate

http://groups.google.com/group/distance-toolbox


Table 1
Percentiles of the stability for each RSN, at different levels. Percentiles of the
distribution of the stability for each RSN at the group, average individual and individual
levels. Only the regions within a RSN were considered to derive the percentiles of the
distribution. For the individual stability and for each stability percentile, the 5% lower
and upper percentiles were derived across the 43 subjects.

Percentile Stability type RSNs

1 2 3 4 5 6 7

0.01 Group 0.54 0.40 0.45 0.41 0.43 0.41 0.07
Average individual 0.20 0.22 0.20 0.21 0.21 0.17 0.13
Individual (5% percentile) 0.03 0.04 0.02 0.03 0.03 0.02 0.02
Individual (95%
percentile)

0.13 0.16 0.13 0.12 0.15 0.11 0.09

0.25 Group 0.72 0.65 0.86 0.62 0.72 0.88 0.55
Average individual 0.30 0.33 0.39 0.27 0.33 0.41 0.27
Individual (5% percentile) 0.14 0.15 0.19 0.16 0.20 0.14 0.14
Individual (95%
percentile)

0.42 0.55 0.51 0.28 0.40 0.58 0.30

0.5 Group 0.77 0.76 0.94 0.72 0.77 0.91 0.71
Average individual 0.33 0.36 0.49 0.30 0.39 0.53 0.33
Individual (5% percentile) 0.20 0.23 0.36 0.22 0.29 0.32 0.23
Individual (95%
percentile)

0.57 0.65 0.68 0.37 0.58 0.72 0.47

0.75 Group 0.81 0.80 0.94 0.75 0.82 0.91 0.74
Average individual 0.38 0.40 0.57 0.33 0.43 0.56 0.38
Individual (5% percentile) 0.24 0.28 0.47 0.25 0.31 0.40 0.28
Individual (95%
percentile)

0.63 0.67 0.71 0.50 0.64 0.73 0.53

0.99 Group 0.81 0.80 0.94 0.79 0.83 0.91 0.76
Average individual 0.45 0.45 0.62 0.38 0.48 0.60 0.44
Individual (5% percentile) 0.29 0.30 0.50 0.29 0.34 0.43 0.32
Individual (95%
percentile)

0.64 0.70 0.71 0.52 0.65 0.74 0.55

Fig. 9. Group and average individual stability maps. The group and average individual stability maps were generated for each of the 7 group stable clusters and superimposed on the
MNI152 non-linear template. The stability score were derived in the whole brain, yet a threshold of 0.2 was applied. Some representative sagittal, coronal and axial slices were
selected manually.
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the individual and group stability of any type of random clustering
process.

There was a good agreement between the RSNs found in this paper
and those previously reported in the literature, despite a large
methodological variability. The default-mode network is already
known to be robustly identified by different techniques (Long et al.,
2008). Some networks reported in (Damoiseaux et al., 2006) were still
not found here, such as the executive control network. Note that there
are actually discrepancies in the ICA studies themselves, e.g.
(Damoiseaux et al., 2006, 2008; Perlbarg et al., 2008; Smith et al.,
2009). Such discrepancies might be explained by many factors,
including differences in preprocessing strategies, differences between
the k-means and ICA, and also differences between the inference
framework employed to derive the group-level networks. Moreover,
the differences may also be related to the number of clusters or com-
ponents that were selected. ICA and clustering are indeed expected to
behave quite differently regarding this parameter: by construction of
the linear model assumption in ICA, the maximal possible number of
components equals the number of time points. By contrast, there is no
constraint on the number of clusters in a dataset even in dimension 1.
These questions need to be investigated in the future. In this context,
BASC may prove useful by providing a single inference framework
able to deal with all the types of clustering algorithms. The stability
contrast could be used to perform model selection in this context, i.e.
to quantify which technique performs best.

The multi-level BASC has a substantial computational cost, as it
involves thousands of replications of a clustering process in high
dimension. The region-growing stage of the preprocessing took 30 h,
the first pass of BASC which consisted of testing multiple numbers of
clusters took 66 h. The second pass to generate the stability measures
with high accuracy took 8 h. This computation time is still amenable
on a single workstation, but markedly slower than a standard general



Fig. 10. Individual stability maps. The two most stable RSNs, i.e. RSN3 (a), RSN6 (c), and the two least stable RSNs, RSN4 (b) RSN7 (d), were selected to illustrate the variability of
individual stability maps associated with stable group clusters. For each RSN, the average and standard deviation of individual stability maps as well as two individual maps were
selected (see text for details) and superimposed on the MNI152 non-linear template. Some representative sagittal, coronal and axial slices were selected manually.
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linear model analysis. The implementation of BASC takes advantage
of parallel computation on multiple computational cores13 and the
actual computation time for the whole BASC analysis was 3 h 15 min.
This computation time is still reasonable considering that a model
selection was performed over a large grid of clustering parameters.
The multi-level BASC for a fixed number of clusters actually ran in a
decent time (8 h in our case). Computational cost is one common limi-
tation of resampling-basedmethod, but it is the price to pay for deriving
non-parametric statistics on a complicated stochastic process.

An important contribution of this work was to provide a
probabilistic measure of the clustering stability. This formulation did
not rely on component matching, as is commonly done in ICA
(Esposito et al., 2005; Damoiseaux et al., 2006; Perlbarg et al., 2008).
While the latter measures are known to exhibit an upward statistical
bias (Langers, 2010), i.e. the stability is overestimated, the BASC
approximation of clustering stability exhibited only little bias in finite
samples with synthetic data. For stability measures in the range 0.5–1,
the bias was actually found to be downward, i.e. the stability was
underestimated. Some extensions of the bootstrap, e.g. (Shimodaira,
2004), would allow to further reduce the bias as is done in the package
pvclust (Suzuki and Shimodaira, 2006). Bootstrap bias-correction has
unfortunately a large computational cost which makes its application
to massive datasets such as resting-state fMRI challenging. In the
perspective of further validation of the bootstrap approximation of
the stability, the ideal strategy would be to compare the bootstrap
estimate to measures derived using real replications of the experi-
ment. This can be done at the individual level by scanning multiple
times the same population, e.g. (Zuo et al., 2010). Validation of BASC
at the group level would require a large number of independent
13 The processing was performed on SUN Dual-Dual Opteron 875 nodes with a total
of 90 cores available.
groups of subjects. Such ambitious validation strategy is now feasible
thanks to the recent release of extensive public databases of resting-
state fMRI, both for test–retest analysis14 and for multi-group
analysis15 (over 1000 subjects).

The idea of building the group-level RSNs by performing a
clustering on a similarity matrix averaged across subjects has been
proposed previously for various similarity measures: Salvador et al.
(2005) used partial correlation, while van den Heuvel et al. (2008)
considered directly the adjacency matrix of an individual clustering.
The choice of the individual stability matrix as a measure of similarity
in the group clustering was motivated primarily by the purpose of the
multi-level BASC: the group clustering was designed to reflect the
stable features of the individual clustering. In the pure perspective of
group clustering, it would still be possible to employ the group-level
BASC with any type of individual similarity measure. The stability
contrast could again serve as a measure of the clustering quality to
compare approaches.

The preprocessing strategy implemented in this work included
a physiological noise correction and a region-growing algorithm to
reduce the spatial dimension. Data-driven noise correction has
been reported to improve the detection of RSNs (Giove et al.,
2009; Weissenbacher et al., 2009), yet the procedure that we used
Perlbarg et al. (2007) has not been evaluated in this context. Spatial
dimension reduction has been employed quite often in the past, e.g.
(Salvador et al., 2005), but using anatomically defined brain areas
such as the AAL template (Tzourio-Mazoyer et al., 2002). A couple of
groups recently applied some data-driven techniques to derive a
large number of brain regions and conduct a region-based analysis
(Bellec et al., 2006; Thirion et al., 2006; Meunier et al., 2009).
14 http://www.nitrc.org/projects/nyu_trt.
15 http://www.nitrc.org/projects/fcon_1000/.

http://www.nitrc.org/projects/nyu_trt
http://www.nitrc.org/projects/fcon_1000/
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Because of its computational cost, the preprocessing of fMRI time
series was not included in the bootstrap replication of the clustering
and its impact on stability was therefore not assessed by BASC. As a
preliminary experiment to test the robustness of the BASC results to
different choices of preprocessing strategies, the identification of the
group stable RSNs reported in this manuscript was replicated with
two other preprocessing strategies, see Supplementary Material C.
Our conclusions were that excluding the physiological noise cor-
rection (CORSICA) and the spatial smoothing from the preprocessing
had only a marginal influence on the stable group clusters. The
choice of the template of brain areas used to constrain the region
growing had a more pronounced effect, notably through the seg-
mentation of the grey matter, yet most features of the clustering
were retained. This suggested that the BASC group results were
reasonably robust to the choice of the preprocessing strategy.
Assessing the impact of various preprocessing strategies on the
multi-level BASC results more thoroughly will be an important area
for future work.

An interesting finding that was not further investigated in this
work was the existence of stable clusters at multiple spatial scales, i.e.
with different numbers of clusters. A recent article (Smith et al., 2009)
has reported about 45 RSNs with consistent ICA maps at the group-
level. Our results suggest that there may be many numbers of clusters
where local maxima of clustering stability can be identified. While the
current view of RSNs is focussed on a few widespread networks, the
organization of RSNs at finer spatial scales may also inform us on
critical aspects of the brain functional architecture.

The BASC method naturally extends to perform group comparison.
There are currently only a few techniques available to compare the
RSNs patterns across group, e.g. (Calhoun et al., 2004; Sui et al., 2009).
The present work concentrated on a single group, but the difference
between the average individual-level stability matrices derived on
two distinct groups of subjects would allow to test for differences in
the underlying clustering structures. The group-level clustering
would then search for groups of brain regions with a large difference
in stability between the two groups.

The ability of the multi-level BASC to provide individual stability
maps associated with group-level RSNs is a key feature for clinical
applications. For example, it has been shown that the overlap between
some individual default-mode network maps and a group template
allowed to differentiate between patients with Alzheimer's disease
and healthy controls (Greicius et al., 2004). This result however
required to select a default-mode network component for each
subject on the basis of an a priori template. The BASCmethod provides
a fully automated alternative which applies on an arbitrary large
number of networks. As was illustrated in the present work, the
individual stability maps derived from group RSNs provide a well-
defined correspondence of RSNs across subjects while allowing to
extract some substantial subject-specific features.
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